
CS3485 
Deep Learning for Computer Vision

Lec 22:  Image Generation by Prompt



Announcements

■ Save the date Nov 29th (Wed) during lecture:
● Ben Swanson from Ubisoft will be our guest lecturer!
● He’ll come to talk about some of his work in computer 

vision for health.
● Make sure to show up and ask him questions!

■ Lectures after Mega Quiz:
● Attendance mandatory throughout.
● I’ll be there to help out on projects for next week’s 

lectures.
● We’ll have our final formal lecture on Tuesday Dec 3rd 

after thanksgiving

■ TA applications are open!



Announcements

■ There will be a bunch of candidates to our faculty position giving talks! This Thursday at 
4:15-5:45 we’ll have Brandon Fain from Duke University with a talk titled: 

Algorithmic Fairness, Moral AI, and Human Alignment

■ We’ll have 4 more coming after that one, many of them on AI, 4:15-5:45 in Mon, Wed and 
Fri! Please show up to as many as you can!



(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object 
Detection

Fast Object 
Detection

Intro to Image 
Segmentation

Autoencoders  Advanced GANs 

Applications of Detection 
and Segmentation

Image Generation 
with GANs

The Attention 
Mechanism

Transformers 
and ChatGPT

Intro to 
Computer Vision

Linear Classifiers and 
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural 
Networks

Optimization 
in Deep Learning

Pytorch II – Images and 
Regularization

Data Augmentation 
and Deep CNNs

Inception Net and 
what CNNs learn 

Transfer Learning and 
Residual Nets

Adversarial Examples 
and Self-supervision

Intro to 
MLOps

Image Generation 
by Prompt

Misc. 
Topics



Computer Vision and Language

■ Up to now we saw many applications of Deep 
Learning to CV and NLP tasks, but it has been also 
applied to many other data domains.

■ Some of these applications are in fact multi-modal, 
i.e., leverage more than one domain to learn a 
specific task.

■ Today, our goal is to learn a currently very popular 
multi-modal computer vision task: image 
generation by prompt (also called text-to-image 
translation), which means generating an image 
from its textual description.

■ Here, we will learn how to use a famous method 
called Diffusion to solve this problem.

Image generated by the prompt “A photo of an 
astronaut riding a horse”.



First Ingredient: CLIP

■ In this task, we first need to make textual and visual data interact so our text may guide 
the generation of our desired image. 

■ One recent popular approach to connect text and image domains is CLIP (Contrastive 
Language-Image Pretraining, from a 2021 paper*), which is a self-supervised method that 
aims to find similar representations for corresponding data in different domains.

■ But what does that mean? Assume we have a batch of N images paired with their 
respective descriptions, e.g.: 

{(Image1, Text1), (Image2, Text2), …,  (ImageN, TextN)}.

■ CLIP aims to jointly train an Image and a Text Encoder Networks that produce vector 
outputs (all of dimension 512) I1, I2, …, IN and text embeddings T1, T2, …, TN such that I1 
≅ T1, I2 ≅ T2, … , IN ≅ TN and Ii is as different as possible from Tj for any i ≠ j.

* OpenAI, the creator of CLIP, provided a pedagogical Colab notebook for its use. HuggingFace also makes its pretained CLIP networks 
easily available for developers.

https://arxiv.org/pdf/2103.00020.pdf
https://colab.research.google.com/github/openai/clip/blob/master/notebooks/Interacting_with_CLIP.ipynb
https://huggingface.co/docs/transformers/model_doc/clip


First Ingredient: CLIP

N Text descriptions

N Images corresponding 
to the description

Image
Encoder 

(IE)

Text
Encoder 

(TE)
My cute 

little dog!

My cute little dog!
My cute 

little d
og!

My cute 
little dog!

My cute little dog!

My cute 
little dog!

d1,1 d1,2 d1,3 … d1,N

T1 T2 T3 … TN

I1

I2

I3

…

IN

d3,1 d3,2 d2,3 … d2,N

d3,1 d3,2 d3,3 … d3,N

… … … … ...

dN,1 dN,2 dN,3 … dN,N

■ It means that we can 
consider the similarity di,j 
between Ii and Tj and 
find all possible di,j from 
the batch.

■ For that, we can use the 
inner product similarity

di,j = Ii
TTj, 

■ One then needs to 
maximize the diagonal 
values of an N × N 
matrix, while minimizing 
the other values in it.



First Ingredient: CLIP

■ But which architecture are used for the encoders? The original paper used the following:
● The Text Encoder (TE) is a standard Transformer encoder.
● The Image Encoder (IE) can be either a ResNet or a Vision Transformer (ViT).

■ Some other facts about the training of CLIP:
● CLIP is trained using a staggering amount of 400 million image-text pairs. For comparison, the 

ImageNet dataset contains 1.2 million images.
● The final trained CLIP model was trained on 256 V100 GPUs for two weeks. For an on-demand 

training on AWS, this would cost at least 200k dollars!
● The model uses a batch of N = 32,768 images for training, meaning that they had to keep a 

matrix of the size N × N floats in its RAM memory, which amounts to around 17.5 Gb!



T4

0.4

CLIP in Practice: Toy example

Available image descriptions

IE

TE

T1 T2
T3

I 0.1 0.9 0.3

A cat on the beach

A dog riding a bike

A dog on the beach

A book on the table

TE

TE

TE

Input Image

■ What can we do with it?
■ We can use the trained 

TE and IE to find a 
description for an image.  

■ We pass all the available 
descriptions through TE 
and our image through IE 
to find their respective 
vector representations.

■ Then we select the text 
whose representation is 
the most similar to the 
image’s.



0.8...

CLIP in Practice: Zero-shot learning

■ CLIP is able to perform 
zero-shot learning: the 
ability of a model to 
perform tasks it was not 
explicitly trained to do.

■ For example, for image 
classification*, one can 
convert a series of 
possible class labels, turn 
them into descriptions and 
select the that best 
describes an unlabeled 
image, according to CLIP.

TN

0.1

Labels turned into descriptions

IE

TE

T1 ... TN-1

I 0.2

A photo of a plane

A photo of a car

...

A photo of a bird

TE

TE

Unlabeled Image

plane

car

...

bird

Labels

* Note that CLIP was not trained specifically for image classification.



Go over this colab notebook in class: 
https://colab.research.google.com/github/openai/c
lip/blob/master/notebooks/Interacting_with_CLIP
.ipynb



CLIP in Practice: Zero-shot learning

■ Here are a few CLIP’s Zero-shot learning results* (check paper for more):

* They show the top-5 prediction per image. The ground truth label is colored green while an incorrect prediction is colored orange.

https://arxiv.org/pdf/2103.00020.pdf


CLIP in Practice: Text-Driven Image Manipulation

■ CLIP had also been used in connection with StyleGAN for text-based image 
manipulation:
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“Emma Stone” “Mohawk 
Hairstyle”

“Without makeup” “Cute cat” “Lion” “Gothic Church”



CLIP in Practice: Text-Driven Image Manipulation

■ How does it work? The first step is to embed the 
input image I into the StyleGAN space (like in this 
2019 paper* and in facemorph) to find a vector zi . 
We hope that, if zi is given to the generator G in 
StyleGAN, we get an image similar to I.

■ Then, starting from zi and having CLIP’s trained 
encoders at our disposal, we’d find another zo, 
with (where text is the input text):

Input Image Image generated by 
StyleGAN with zi.

zo = argmaxz [IE(G(z))]T[TE(text)]

■ This means that we’d like StyleGAN to generate a latent vector whose corresponding 
image has an encoding that is very similar to the text description according to CLIP.

* I am simplifying here for better understanding. Check the original paper and/or ask me about the remaining details, if you’d like.

https://arxiv.org/pdf/1904.03189.pdf
https://facemorph.me/


CLIP in Practice: Text-Driven Image Manipulation

■ This is the basic approach explained in StyleCLIP (published in 2021). The authors also 
provide an implementation in Replicate.com (a site similar to HuggingFace).

■ In StyleGAN-NADA (also published in 2021), the 
authors elaborate StyleCLIP’s technique to fast 
image domain adaptation (like translating a 
sketch drawing to its final result, for example). 
They also provide an implementation you can 
play with it. Results of StyleGAN-NADA for domain adaptation

https://arxiv.org/pdf/2103.17249.pdf
https://replicate.com/orpatashnik/styleclip
https://arxiv.org/pdf/2103.17249.pdf
https://replicate.com/rinongal/stylegan-nada
http://www.youtube.com/watch?v=5v24oRG_MUE


CLIP in Practice: Text-Driven Image Manipulation

■ Here a few more results of StyleGAN-NADA (you can try it yourself here): 

Input Image

https://replicate.com/rinongal/stylegan-nada


Exercise (in pairs)

■ Today is the last day, so let’s just have fun! Go play with StyleCLIP and StyleGAN-NADA 
implementations o Replicate. Try out the various available parameters in those models 
and try to understand what they are responsible for.



Second Ingredient: Diffusion Models

■ Our attempt here to generate images from text is based on Diffusion Models, which 
consist of two processes:
● A forward diffusion process adds noise to a training image, gradually in T steps, turning it into 

an uncharacteristic noise image.
● A reverse diffusion, which attempts to, starting from a noisy image, recover a realistic image.

■ We’ll try to mimic this process so to learn how to generate images from noise.

Forward Diffusion

Reverse Diffusion



Second Ingredient: Diffusion Models

…+Noise

UNetUNet…

+Noise

■ Reproducing the forward process is simple: at each step, simply add Gaussian noise:

■ The reverse process (that removes noise) is not as straightforward, but we can use 
denoising networks (such as UNets) on various (xi, xi+1) image pairs, to do that job:

x0 x1 x2 xT

x0 xT-2 xT-1 xT



Second Ingredient: Diffusion Models

■ The idea is inspired in thermodynamics (via a 2015 
paper) and is the basis for what became known as 
Diffusion Model (DM), published in 2020*.

■ DM for deep learning is a very beautiful theory with 
compelling results, overcoming some of the 
limitations of GAN-based image generation (it is not 
prone to mode collapse for example).

■ The main drawback of DM is its complexity and 
learning speed. Originally, it used T = 1000, which 
means that it trained 1000 different UNets!

■ Latent Diffusion Models (LDM), published in 2021, 
overcame this issue by training these UNets on 
smaller sized latent image representations.

Images (256 × 256) of faces generated by the 
original diffusion process algorithm.

http://proceedings.mlr.press/v37/sohl-dickstein15.pdf
https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2112.10752.pdf


…

Second Ingredient: Diffusion Models

Image
Encoder …

…

+Noise +Noise

Image
Decoder UNetUNet

z0 z1 zT

zTzT-1z0

Pixel Space Latent Space

■ The idea is to train an Autoencoder* and used its (much smaller) latent space for diffusion:

■ Besides the speed-up, DLM also introduced added a feature that allowed conditional 
information (such as, but not limited to, text) to the generation pipeline. 

* The authors used an image compression technique that is more elaborated than our simple Autoencoder, but the idea is similar.

https://arxiv.org/pdf/2012.09841.pdf


…

Second Ingredient: Diffusion Models

Image
Encoder …

…

+Noise +Noise

Image
Decoder UNetUNet

z0 z1 zT

zTzT-1z0

“A cute cat” TE

Pixel Space Latent Space

Text (Conditioning) Space

■ They input CLIP’s text embedding into each UNet along with their respective latent vector*. 

* The text embedding first goes through different attention modules before entering the UNets.



Second Ingredient: Diffusion Models

■ With this simpler approach, they are able to “quickly” train a 1.45 billion parameter model 
and generate the following 256 × 256 images with the prompts:

“A street sign that 
reads ‘Latent 

Diffusion’”

“A zombie in the 
style of Picasso”

“An image of an 
animal half mouse 

half octopus”

“An illustration of a 
slightly conscious 
neural network”

“A painting of a 
squirrel eating a 

burger”

“A watercolor 
painting of a chair 
that looks like an 

octopus”

“A shirt with the 
inscription: ‘I love 

generative models!’”



Second Ingredient: Diffusion Models

■ The number of steps in this diffusion process is crucial to generate realistic images.

■ With DLM, we can also condition the generation with data other than textual by replacing 
the Text Encoder. We can condition it on segmentation maps, for example: 



Second Ingredient: Diffusion Models

■ The authors showed that DLM can be used in other imaging tasks, such as in painting:

■ Or image generation from bounding boxes:



Stable Diffusion

■ DLM eventually became known as Stable Diffusion and as the basis for Stability AI, the 
company that is commercializing this algorithm.

■ Stable Diffusion became very popular at creating beautiful art! Lexica* is a website where 
you can search over its creations and prompts!

* You can play with a pretrained generative code of lexica in HuggingFace here.

https://stability.ai/
https://lexica.art/
https://huggingface.co/openskyml/lexica-aperture-v3-5


Other popular Text-to-Image approaches

■ Besides Stable Diffusion, two other approaches tackle the text-to-image task:
● DALL·E (under DALL·E 2): announced by OpenAI in April 2022 in a blog post, uses a diffusion 

model conditioned on CLIP image embedding, but much further details were not disclosed.
● Midjourney (under versions v1 to v5): created by an independent lab of the same name, the 

underlying technology is speculated to be based on Stable Diffusion, but it wasn’t made public. 
Creators can use the via a Discord channel.

“Alone astronaut on Mars, mysterious, colorful, hyper realistic” “Dark alley at night 4k raining aesthetic”

Stable Diffusion DALL·E 2 Midjourney Stable Diffusion DALL·E 2 Midjourney

https://openai.com/product/dall-e-2
https://www.midjourney.com


Stable Diffusion in Practice

■ HuggingFace created the Diffusers library, 
where you have access to pretrained 
diffusion models.

■ It’s pretty easy to load and run them! First load what they call a diffusion pipeline from a 
pretrained diffuser:

# First install these libraries via !pip install diffusers transformers
from diffusers import DiffusionPipeline

model_id = "runwayml/stable-diffusion-v1-5"
pipeline = DiffusionPipeline.from_pretrained(model_id)

■ Then, come up with a prompt and send it through the pipeline as following:

prompt = "An astronaut riding a horse"
image = pipeline(prompt).images[0]

https://huggingface.co/docs/diffusers/index


Stable Diffusion in Practice

■ And after a few seconds (although it may take 
some minutes depending on your machine), 
here is your result!

■ In that diffuser pipeline you can set:
● How many steps you want in your inference (the 

lower, the quicker),
● How much closely the inferred image should 

follow the prompt,
● The model version  and quality of your output.

■ HuggingFace also has many good tutorials and 
codes for you to get started with Diffusion!

Click here to open code in Colab

https://huggingface.co/docs/diffusers/tutorials/tutorial_overview
https://colab.research.google.com/drive/1c88swcPO96Xy2zAygfDb1QS_JvkJdmbl?usp=sharing
https://colab.research.google.com/drive/1c88swcPO96Xy2zAygfDb1QS_JvkJdmbl?usp=sharing


Video: Art in the AI Era

http://www.youtube.com/watch?v=K0ldxCh3cnI


Video: A humane AI?

http://www.youtube.com/watch?v=ajGgd9Ld-Wc

